
1

Real-time, Adaptive Prediction of Incident Delay for Advanced Traffic
Management Systems

Liping Fu and Bruce Hellinga
Department of Civil Engineering, University of Waterloo, Waterloo, Canada

Phone: 519 885-1211 Ext. 3984; Fax: 519 888-6197; email: lfu@uwaterloo.ca

SUMMARY

This paper presents a fuzzy queuing model that can be used to predict the possible delay or
interval of delay that a vehicle will experience at an incident location based on real-time
information on current queuing condition, future traffic arrival, lane closing and the vehicle’s
arrival time. Compared to most existing methods, the proposed model is unique in three aspects:
first, it explicitly accounts for uncertainties involved in all influencing factors and thus allows easy
incorporation of imprecise and vague information typically available in this type of prediction
environment.  Second, the model is adaptive in the way that it allows continuous update of
estimates as new information is made available in real time. Third, delays obtained from the model
are fuzzy numbers that can be conveniently mapped to linguistic terms for use in systems such as
changeable message signs (CMS). A case study is presented to demonstrate the application of the
proposed model in facilitating the composition of location-dependent delay messages for CMS.

INTRODUCTION

Provision of timely and reliable information on traffic incidents and subsequently induced
congestion is a critical ability to the successful deployment of many envisioned Advanced Traffic
Management and Information Systems (ATMIS).  Ideally, anticipated and quantitative
information such as time-dependent delay caused by an incident should be estimated and provided
to drivers to maximize the effect of information provision (1).  Procurement of such information is
however not a trivial task because of the complex interactions among various factors such as
incident location and severity, incident response capacity, demand fluctuation and diverse driver
responses to information.  Moreover, most of these factors are subject to high uncertainty and
information available to quantify them is often incomplete and subjective in nature. Consequently,
provision of crisp values of expected delays to drivers through systems such as changeable
message signs (CMS) would inevitably lower drivers’ trust in the accuracy of the provided
information because the actual delays they would experience will be either larger or smaller than
what were suggested.  This underlying dilemma has become a major reason for many traffic
management authorities to opt for less effective, but more credible alternatives such as providing
qualitative information only (2).  The goal of this paper is to demonstrate that, with an
appropriate delay prediction model, it is possible to resolve this dilemma.

Incident delay that a vehicle may experience at an incident location can be obtained using a
deterministic model such as deterministic queuing model or shock wave theory if the future values
of the associated parameters such as traffic arrival rate, capacity reduction, and incident duration
can be identified exactly (3, 4, 5).  In real-time application environments, however, these
parameters are often subject to large variations and can not be predicted exactly.  As a result, a
deterministic model is not appropriate for use to model incident conditions (6).
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Estimation and prediction of link travel time, which would include incident delay if an
incident has occurred on the associated link, have been one of the major research interests in the
area of ATMIS.  Various methods have been proposed for demonstration ATMIS projects and
simulation studies (7, 8, 9).  The fundamental idea behind most of the proposed methods is a data
fusion process that combines real-time travel time estimates from loop detectors and probe
vehicles with historical travel times.  Although impact of incident occurrences on travel times is
considered through allocating higher weight to real-time estimates, these methods do not fully
make use of available information such as lane closure, possible incident duration and future
traffic volume.

This paper proposed a framework based on fuzzy set theory to model the evolution of
incident congestion or queue development.  The rationale behind this approach is that information
typically available under incident conditions is often in the form of linguistic descriptions
characterized by imprecision and vagueness. The paper first describes various uncertainties
involved during incident conditions and how they can be systematically modeled on the basis of
fuzzy set theory.  A fuzzy queuing model is subsequently presented for predicting the possible
delay or interval of delay that a vehicle will experience at an incident location based on real-time
information on current queuing condition, future traffic arrival, capacity reduction and the
vehicle’s arrival time.  Lastly, a case study is presented to demonstrate the application of the
proposed model in composing location-dependent delay messages for CMS.

A FUZZY INCIDENT DELAY MODEL

Delay that a vehicle will experience as a result of an incident depends on many factors including
incident severity (capacity reduction), incident duration, traffic volume and the time when the
vehicle arrives at the incident location.  In a practical situation, each of these factors is subject to
uncertainty.  It would be a matter of a simple application of deterministic queuing theory or shock
wave theory if we could predict the exact value of these factors.  However, in a practical
situation, each of these factors may be subject to a certain level of uncertainty and the information
that may be available for estimating these factors is commonly imprecise or vague, as discussed
below (10).

Traffic Arrival Rate (V):  Under normal traffic condition, the traffic arrival rate is usually stable
and can be fairly accurately estimated based on historical traffic counts.  However, during incident
conditions, the prediction of traffic arrivals are no longer a trial task because some drivers may
have be informed of the incident occurrence and decide to divert to other routes.  How much
traffic will divert and at what rate will depend on many factors such as traffic information
coverage, drivers’ acceptance of the provided information and local network conditions.
Currently, there is no dependable model available that can be used to model such complexity and
to provide an accurate prediction of the dynamic traffic conditions.  However, it can be
reasonably expected that an approximate estimation of the traffic diversion may be available.  For
example, an experienced traffic manager may be able to give such estimation as “About
20%~30% of the traffic will divert to avoid the incident congestion”, “Majority of the drivers will
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still use the route even one lane is closed due to the incident”.  These linguistic terms can be
properly modeled by a fuzzy set or a fuzzy number.

Incident Duration (L):  The time taken to remove an incident and recover the road capacity, or
incident duration, is another key piece of information needed for predicting the incident delay.  It
has been observed that incident duration usually has a large variation depending on incident
severity and location, traffic condition and the availability of incident management (11).  For
example, Giuliano (11) showed that the mean duration is about 37 minutes with a standard
deviation of 30 minutes.  Therefore, it is nearly impossible to give a precise prediction on the
incident duration even when there is a large amount of historical data available.  However, it is
not unusual for an experienced incident response team or highway police to give an estimation of
the duration after they know the incident situation and location.  For examples, they can present it
as “it would take about 30 to 40 minutes to remove the stalled car”, “it takes at least one hour” or
“It shouldn’t take longer than two hours”.  Such information presented in linguistic terms is
commonly imprecise or vague and can be adequately represented using fuzzy numbers.

Current Queue (Q): There is usually a time lag between the current time (the time to make a
prediction) and the incident occurrence.  Therefore, it is likely that a queue has formed at the
incident location.  The current queue can be estimated based on information such as the elapsed
time from incident occurrence, traffic arrivals and reduced capacity.  However, it is more likely
that it can be directly obtained from various information sources such as observers, police or a
special incident response team.  This information is usually a linguistic description on the queuing
status (e.g. “the queue is about to backup to 12th street”).  It should be noted that in most cases,
these description often gives the information on the current queue reach instead of the queue
length.  However, these two variables can be considered as the same before the incident is
removed.  For the same reason as for the previous parameters, it can be nicely represented using a
fuzzy set.

Incident Capacity (C):  The capacity under normal traffic condition can be considered as constant
for a given road section and estimated based on HCM (12).  During incident condition, it has been
observed that the departure rate from the queue (or capacity during incident condition) varies
significantly because of the stop-and-go process and “gawkers block”.  The actual value can be as
low as 1500 to as high as 2000 pcu/hour/lane, depending on the local condition and driver
behavior (12).  It has also been observed that the lane-blocking incidents have more than a
proportional impact on capacity.  For example, Urbanek and Rogers (13) indicated that the
blockage of a signalized lane on a three-lane facility reduced freeway capacity by 40~50% (instead
of 33% based on space reduction).  Accordingly, it is desirable to use a fuzzy number to model
the reduced capacity during incident.

Vehicle Arrival Time (T):  The incident delay that a vehicle may experience also depends on
when the vehicle will arrive at the incident location.  For example, if a Traffic Information Center
(TIC) is to provide information to a vehicle currently at a known location, the prediction of
incident delay also requires the estimation of travel time from the current location to the incident
location.  There is no doubt that this travel time involves uncertainty caused by many factors such
as variation of traffic demands, traffic control and driving conditions.  Although this travel time



4

can be modeled as a random variable, the underlying distribution may not follow a popular
mathematical distribution such as normal, log-normal or Beta distribution.  Therefore, it is also
appropriate to use a fuzzy number to represent the travel time or arrival time at the incident
location.

A methodology that applies a traditional deterministic queuing model with fuzzy input
parameters has recently been proposed (10).  Given the input parameters described above, the
functional relationship between the fuzzy incident delay and the input variables was established
based on arithmetic operations of fuzzy numbers using the α-cut concept (14).  Figure 1 shows
the α-cut representation of a fuzzy queuing model where the current queue (Q) is represented by
its α-cut interval [q1

(α), q2
(α)], the possible cumulative traffic arrival at the incident location is

represented by two straight lines with rates of v1
(α) and v2

(α) - the α-cut interval of the fuzzy traffic
arrival rate V.  The cumulative departure at the incident location is represented by two straight
lines with rates of c1

(α) and c2
(α),  which intersect with lines representing the recovered full capacity

(s) at the incident removal time, L, represented by l1
(α) and l2

(α).  The α-cut interval of the incident
delay, Dα, for a vehicle arriving at the incident location at a given time (T) - represented by t1

(α)

and t2
(α), can then be obtained by Equation 1:
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Figure 1. An αα-cut representation of a fuzzy incident delay queuing model
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where d1
(α) and d2

(α) are known functions of v1
(α),v2

(α),q1
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(α),c2
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(α) and
t2

(α) (refer to (10) for the complete equations).

The developed fuzzy incident delay models allows prediction of uncertainty associated
with incident delay and can be readily used by ATMIS applications that need to consider
uncertainty in information provision. Real-time information, such as queue length reported by
traffic patrol and/or eyewitnesses, updated short-term prediction on traffic volume and estimate of
incident duration provided by on-site incident response team can be translated into fuzzy numbers
and fused as input to corresponding parameters. Prediction on delay can therefore be updated and
improved adaptively in real time.

CASE STUDY

This section presents a hypothetical case to demonstrate the use of the proposed model.  Consider
the case that an accident was detected on a three-lane freeway section at 3:20pm, as shown in
Figure 2.  Two CMS were available for the traffic management center (TMC) to post incident
delay information.  The messages were intended for drivers who are just in the view of one of the
CMS. In order to determine what message should be displayed, the TMC needed to predict the
possible delays that would be experienced by vehicles if they were to continue to travel on the
freeway section instead of diverting to other routes. It was assumed that some incomplete pieces
of information were available which allowed representing the traffic arrival rate, incident duration,
and capacity during incident and current queuing status as fuzzy trapezoidal numbers (TrFN)
represented by {a, m, n, b}. The data used for analysis are summarized in Figure 2.  Two
prediction scenarios were considered. Scenario 1 represented the estimation task at the time
3:20pm, that is, right at the time the incident was detected while Scenario 2 was set to model the
prediction task at 3:40pm, at which the incident was expected to be removed soon.  Note from
the data that a larger value of current queue was used in Scenario 2 as compared to Scenario 1 to
reflect the likely congestion development.

Figure 2. Freeway section with an incident

Based on the given data, the fuzzy incident delay, as approximated using five levels of
presumption with αα ={0; 0.2; 0.4; 0.6; 0.8; 1.0}, can be calculated for further analysis.  Figure 3
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shows the predicted fuzzy incident delays under two given scenarios for vehicles at each CMS.
The arrival times of the vehicles at a given CMS were generated based on the distance from the
CMS to the incident location and a speed of 100km/h.  The predicted delay values for both
scenarios at each CMS are shown in Figure 3.  The following findings are observed:

• There exists a significant amount of uncertainty in incident delay.  This indicates the need to
recognize it explicitly in information provision. For example, instead of displaying a single
estimate of delay on a CMS, an interval of possible delay, such as “incident delay between 15-

• CMS at different locations (distances from an incident spot) should display different delay
information to account for differences in vehicles’ expected arrival time. Generally, during the
time period that incident congestion starts to build up (Scenario 1), CMS farther away from
the incident spot (CMS 2) should display delay values higher than those on CMS nearer to the
incident spot (CMS 1).  Conversely, during the time period that incident is soon to be
removed (Scenario 2), CMS near the incident spot (CMS 1) should display delay values
higher than those on CMS farther away from the incident spot (CMS 2).

CONCLUDING REMARKS

This paper has presented a fuzzy queuing model that can be used to predict the delay that a
vehicle would experience if traveling through an incident location.  In contrast to the traditional
deterministic models, the new model explicitly considers the uncertainties involved in future traffic
arrivals, incident duration, departure rate during incident, current queue status and vehicle arrival
time, allowing easy incorporation of imprecise and vague information on these variables.  The
proposed model does not require significant additional data or computational requirements over
traditional methods and therefore may readily be adopted for ATMIS applications or simulation
studies. The numerical example has demonstrated the necessity for providing drivers incident
delay information that is location-varied and explicit in informing uncertainties.

It should be pointed out that the methodology presented in this paper assumes that the
input variables can be modeled as fuzzy numbers and the related membership functions are known
a priori.  As a result, the implementation of the proposed model requires an interface to generate
membership functions of the input variables based on various sources of information in real-time.
The next step of this research will focus on the development of this type of interface and the
calibration and refinement of the proposed model for application in ATMIS.
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Figure 3. Estimation of fuzzy incident delay for CMS
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